Bài viết lách Cách tính khoảng cách giữa đường thẳng và mặt phẳng tuy nhiên song với cách thức giải cụ thể chung học viên ôn tập dượt, biết phương pháp thực hiện bài xích tập dượt Cách tính khoảng cách giữa đường thẳng và mặt phẳng tuy nhiên tuy nhiên.
Cách tính khoảng cách giữa đường thẳng và mặt phẳng tuy nhiên song đặc biệt hay
A. Phương pháp giải
Quảng cáo
Bạn đang xem: khoảng cách giữa đường thẳng và mặt phẳng
Cho đường thẳng liền mạch d // (P); nhằm tính khoảng cách đằm thắm d và (P) tớ triển khai những bước:
+ Cách 1: Chọn một điểm A bên trên d, sao mang lại khoảng cách kể từ A cho tới (P) rất có thể được xác lập dễ dàng nhất.
+ Cách 2: Kết luận: d(d; (P)) = d(A; (P)).
B. Ví dụ minh họa
Ví dụ 1: Cho hình chóp S. ABCD đem SA ⊥ (ABCD), lòng ABCD là hình thang vuông bên trên A và B; AB = a. Gọi I và J theo lần lượt là trung điểm của AB và CD. Tính khoảng cách đằm thắm đường thẳng liền mạch IJ và (SAD)
Hướng dẫn giải
Chọn C
Ta có: I và J theo lần lượt là trung điểm của AB và CD nên IJ là đàng trung bình của hình thang ABCD
Ví dụ 2: Cho hình thang vuông ABCD vuông ở A và D; AD = 2a. Trên đường thẳng liền mạch vuông góc bên trên D với (ABCD) lấy điểm S với SD = a√2. Tính khỏang cơ hội đằm thắm đường thẳng liền mạch CD và (SAB).
Hướng dẫn giải
Chọn A
Vì DC // AB nên DC // (SAB)
⇒ d(DC; (SAB)) = d(D; (SAB))
Kẻ DH ⊥ SA
Do AB ⊥ AD và AB ⊥ SA nên AB ⊥ (SAD)
⇒ DH ⊥ AB lại sở hữu DH ⊥ SA
⇒ DH ⊥ (SAB)
Nên d(CD; (SAB)) = DH.
Trong tam giác vuông SAD tớ có:
Quảng cáo
Ví dụ 3: Cho hình chóp O.ABC đem đàng cao OH = 2a/√3 . Gọi M và N theo lần lượt là trung điểm của OA và OB. Khoảng cơ hội đằm thắm đường thẳng liền mạch MN và (ABC) bằng:
Hướng dẫn giải
Chọn D
Vì M và N theo lần lượt là trung điểm của OA và OB nên
MN // AB
⇒ MN // (ABC)
Khi ê, tớ có:
(vì M là trung điểm của OA).
Ví dụ 4: Cho hình chóp tứ giác đều S.ABCD đem AB = SA = 2a . Khoảng cơ hội kể từ đường thẳng liền mạch AB cho tới (SCD) vày bao nhiêu?
Hướng dẫn giải
Gọi O là kí thác điểm của AC và BD; gọi I và M theo lần lượt là trung điểm cạnh AB và CD. Khi đó; IM // AD //BC
Do S.ABCD là hình chóp tứ giác đều phải sở hữu O là tâm của hình vuông nên SO ⊥ (ABCD) .
+ Do tam giác SAB là đều cạnh 2a
Chọn đáp án D
C. Bài tập dượt vận dụng
Câu 1: Cho hình chóp S.ABCD đem lòng ABCD là hình vuông vắn tâm O, cạnh a. sành nhì mặt mũi mặt (SAB) và (SAD) nằm trong vuông góc với mặt mũi bằng phẳng lòng và SA = a√2. Gọi E là trung điểm AD. Khoảng cơ hội đằm thắm AB và (SOE) là
Lời giải:
+ Vì nhì mặt mũi mặt (SAB) và (SAD) nằm trong vuông góc với mặt mũi bằng phẳng lòng .
mà (SAB) ∩ (SAD) = SA
⇒ SA ⊥ (ABCD) .
+ Do E là trung điểm của AD Khi ê
Tam giác ABD đem EO là đàng khoảng
⇒ EO // AB ⇒ AB // (SOE)
⇒ d(AB, (SOE)) = d(A; (SOE)) = AH
với H là hình chiếu của A lên SE.
Quảng cáo
Câu 2: Cho hình lập phương ABCD.A'B'C'D' đem cạnh vày 1 (đvdt). Khoảng cơ hội đằm thắm AA’ và (BB’D’) bằng:
Lời giải:
Chọn B
Ta có: AA’ // BB’ nhưng mà BB’ ⊂ ( BDD’B’)
⇒ AA’ // (BDD’B’)
⇒ d( AA’; (BD’B’)) = d(A; (BDD’B’)
Gọi O là kí thác điểm của AC và BD
⇒ AO ⊥ (BDD’B’) (tính hóa học hình lập phương)
Câu 3: Cho hình chóp S.ABCD đem SA ⊥ (ABCD) lòng ABCD là hình chữ nhật với AC = a√5 và BC = a√2. Tính khoảng cách đằm thắm (SDA) và BC?
Lời giải:
+ Ta có: BC // AD nên BC // (SAD)
⇒ d(BC; (SAD)) = d(B; SAD))
+ Ta minh chứng BA ⊥ (SAD) :
Do BA ⊥ AD (vì ABCD là hình chữ nhật)
Và BA ⊥ SA (vì SA ⊥ (ABCD))
⇒ BA ⊥ (SAD)
⇒ d(B; (SAD)) = BA
Áp dụng toan lí Pytago vô tam giác vuông ABC có:
AB2 = AC2 - BC2 = 5a2 - 2a2 = 3a2
⇒ AB = √3 a
⇒ d(CB; (SAD)) = AB = √3 a
Đáp án D
Câu 4: Cho hình chóp S.ABCD đem lòng ABCD là hình chữ nhật và AB = 2a; BC = a . Các cạnh mặt mũi của hình chóp đều bằng nhau và vày a√2 . Gọi E và F theo lần lượt là trung điểm của AB và CD; K là vấn đề ngẫu nhiên bên trên BC. Khoảng cơ hội đằm thắm hai tuyến đường trực tiếp EF và (SBK) là:
Xem thêm: by the end of this month
Lời giải:
Gọi O là kí thác điểm của AC và BD; I là trung điểm cạnh BC
+ Do SA = SB = SC = SD và OA = OB = OC = OD nên SO ⊥ (ABCD)
+ Ta minh chứng BC ⊥ (SOI)
- Tam giác SBC cân nặng bên trên S đem SI là đàng trung tuyến nên đôi khi là đàng cao: BC ⊥ SI (1).
- Lại có: BC ⊥ SO (vì SO ⊥ (ABCD)) (2)
Từ ( 1) và ( 2) suy ra: BC ⊥ (SOI)
Mà OH ⊂ (SOI) nên BC ⊥ OH
⇒ OH ⊥ (SBC)
Do EF // BK nên EF // (SBK)
⇒ d(EF; (SBK)) = d(O; (SBK)) = OH
Chọn đáp án D.
Câu 5: Cho hình chóp S.ABC đem lòng ABC là tam giác vuông bên trên B; AB= a cạnh mặt mũi SA vuông góc với lòng và SA = a√2. Gọi M và N theo lần lượt là trung điểm của AB; AC. Khoảng cơ hội đằm thắm BC và (SMN) vày bao nhiêu?
Lời giải:
+ Tam giác ABC đem MN là đàng khoảng nên MN // BC
⇒ BC // (SMN) nên :
d(BC; (SMN)) = d(B; (SMN)) = d(A; (SMN))
Gọi H là hình chiếu vuông góc của A bên trên đoạn SM.
+ Ta bệnh minh: MN ⊥ (SAM):
Chọn đáp án A
Quảng cáo
Câu 6: Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a. Các cạnh mặt mũi SA = SB = SC = SD = a√2. Khoảng cách giữa nhì đường thẳng AD và (SBC) là:
Lời giải:
+ Do AD // BC nên AD // (SBC)
⇒ d (AD, (SBC)) = d(H; (SBC))
trong ê H là trung điểm AD.
+ Gọi M là trung điểm của BC và K là hình chiếu vuông góc của H lên SM
⇒ d(H; (SBC)) = HK.
+ Diện tích tam giác SMH là:
Chọn đáp án C
Câu 7: Cho hình chóp S.ABCD đem lòng là hình vuông vắn cạnh a, SD = a√17/2 . Hình chiếu vuông góc H của đỉnh S lên phía trên mặt bằng phẳng (ABCD) là trung điểm của cạnh AB. Gọi K là trung điểm của AD. Tính khoảng cách đằm thắm hai tuyến đường HK và (SBD) theo đòi a
Lời giải:
+ Ta có: H và K theo lần lượt là trung điểm của AB và AD nên HK là đàng khoảng của tam giác ABD
⇒ HK // BD ⇒ HK // (SBD)
⇒ d(HK; (SBD)) = d(H, (SBD))
Kẻ HI ⊥ BD và HJ ⊥ SI
Chọn đáp án C
Câu 8: Cho hình chóp S.ABCD đem lòng ABCD là hình thoi cạnh a và ∠ABC = 60° Hai mặt mũi bằng phẳng (SAC) và (SBD) nằm trong vuông góc với lòng, góc đằm thắm nhì mặt mũi bằng phẳng (SAB) và (ABCD) vày 30°. Khoảng cơ hội đằm thắm hai tuyến đường trực tiếp CD và (SAB) theo đòi a bằng:
Lời giải:
Gọi O là kí thác điểm của AC và BD
Kẻ: OI ⊥ AB; OH ⊥ SI
+ Do CD // AB nên CD // (SAB)
⇒ d(CD, (SAB)) = d(C; (SAB)) = 2d( O; (SAB))
Ta có: AB ⊥ SO , AB ⊥ OI ⇒ AB ⊥ (SOI) ⇒ AB ⊥ OH
Nên OH ⊥ (SAB) ⇒ d(O, (SAB)) = OH
Mà tam giác Ngân Hàng Á Châu ACB cân nặng bên trên B đem ∠ABC = 60° nên tam giác ABC đều
⇒ OC = (1/2)AC = (1/2)AB = a/2 .
+ xét tam giác OAB có:
Chọn đáp án B
Câu 9: Cho hình chóp tứ giác đều S.ABCD đem đàng cao SO = 2, mặt mũi mặt phù hợp với mặt mũi lòng một góc 60°. Khi ê khoảng cách đằm thắm hai tuyến đường trực tiếp AB và (SCD) bằng
Lời giải:
+ Gọi I là trung điểm của CD . Ta có:
⇒ ((SCD), (ABCD)) = (OI, SI) = 60°
+ Ta có: AB // CD nên AB // (SCD)
⇒ d(AB, (SCD)) = d(A, ( SCD)) = 2.d(O, (SCD))
+ Trong mp (SOI) , gọi H là hình chiếu vuông góc của O lên SI
+ Tam giác SOI vuông bên trên O, đem đàng cao OH nên
Do đó: d(AB; (SCD)) = 2d(O; (SCD)) = 2.OH = 2.1 = 2
Chọn B
Săn SALE shopee mon 11:
- Đồ sử dụng học hành giá cực rẻ
- Sữa chăm sóc thể Vaseline chỉ rộng lớn 40k/chai
- Tsubaki 199k/3 chai
- L'Oreal mua 1 tặng 3
ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11
Bộ giáo án, bài xích giảng powerpoint, đề ganh đua dành riêng cho nghề giáo và gia sư dành riêng cho cha mẹ bên trên https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official
Tổng đài tương hỗ ĐK : 084 283 45 85
Đã đem ứng dụng VietJack bên trên điện thoại thông minh, giải bài xích tập dượt SGK, SBT Soạn văn, Văn khuôn, Thi online, Bài giảng....miễn phí. Tải ngay lập tức phần mềm bên trên Android và iOS.
Theo dõi Cửa Hàng chúng tôi không tính tiền bên trên social facebook và youtube:
Nếu thấy hoặc, hãy khích lệ và share nhé! Các phản hồi ko phù phù hợp với nội quy phản hồi trang web sẽ ảnh hưởng cấm phản hồi vĩnh viễn.
Giải bài xích tập dượt lớp 11 sách mới mẻ những môn học
Bình luận