hệ thức lượng trong tam giác

Nhắc lại hệ thức lượng trong tam giác vuông.

Cho tam giác \(ABC\) vuông góc bên trên đỉnh \(A\) (\(\widehat{A} = 90^0\)), tao có:

Bạn đang xem: hệ thức lượng trong tam giác

Quảng cáo

1. \({b^2} = ab';{c^2} = a.c'\)

2. Định lý Pitago : \({a^2} = {b^2} + {c^2}\)

3. \(a.h = b.c\)

4. \(h^2= b’.c’\)

5. \(\dfrac{1}{h^{2}}\) = \(\dfrac{1}{b^{2}}\) + \(\dfrac{1}{c^{2}}\)

 

1. Định lý cosin

Định lí: Trong một tam giác bất kì, bình phương một cạnh vì thế tổng những bình phương của nhì cạnh còn sót lại trừ cút nhì đợt tích của nhì cạnh cơ nhân với \(cosin\) của góc xen thân ái bọn chúng.

Ta với những hệ thức sau:  

$$\eqalign{
& {a^2} = {b^2} + {c^2} - 2bc.\cos A \, \, (1) \cr
& {b^2} = {a^2} + {c^2} - 2ac.\cos B \, \, (2) \cr
& {c^2} = {a^2} + {b^2} - 2ab.\cos C \, \, (3) \cr} $$

Hệ trái ngược của tấp tểnh lí cosin:

\(\cos A = \dfrac{b^{2}+c^{2}-a^{2}}{2bc}\)

\(\cos B = \dfrac{a^{2}+c^{2}-b^{2}}{2ac}\)

\(\cos C = \dfrac{a^{2}+b^{2}-c^{2}}{2ab}\)

Áp dụng: Tính phỏng lâu năm đàng trung tuyến của tam giác:

Cho tam giác \(ABC\) với những cạnh \(BC = a, CA = b\) và \(AB = c\). Gọi \(m_a,m_b\) và \(m_c\) là phỏng lâu năm những đàng trung tuyến theo lần lượt vẽ kể từ những đỉnh \(A, B, C\) của tam giác. Ta có

\({m_{a}}^{2}\) =  \(\dfrac{2.(b^{2}+c^{2})-a^{2}}{4}\)

\({m_{b}}^{2}\) = \(\dfrac{2.(a^{2}+c^{2})-b^{2}}{4}\)

\({m_{c}}^{2}\) = \(\dfrac{2.(a^{2}+b^{2})-c^{2}}{4}\)

2. Định lí sin

Định lí: Trong tam giác \(ABC\) ngẫu nhiên, tỉ số thân ái một cạnh và sin của góc đối lập với cạnh cơ vì thế 2 lần bán kính của đàng tròn trĩnh nước ngoài tiếp tam giác, nghĩa là

\(\dfrac{a}{\sin A}= \dfrac{b}{\sin B} = \dfrac{c}{\sin C} = 2R\)

Xem thêm: thế nào là công dân

với \(R\) là nửa đường kính đàng tròn trĩnh nước ngoài tiếp tam giác 

Công thức tính diện tích S tam giác

Diện tích \(S\) của tam giác \(ABC\) được xem bám theo một trong số công thức sau

\(S = \dfrac{1}{2} ab \sin C= \dfrac{1}{2} bc \sin A \) \(= \dfrac{1}{2}ca \sin B \, \,(1)\)   

\(S = \dfrac{abc}{4R}\, \,(2)\)           

\(S = pr\, \,(3)\)              

\(S = \sqrt{p(p - a)(p - b)(p - c)}\)  (công thức  Hê - rông) \((4)\)

Trong đó:\(BC = a, CA = b\) và \(AB = c\); \(R, r\) là nửa đường kính đàng tròn trĩnh nước ngoài tiếp, bk đàng tròn trĩnh nội tiếp và \(S\) là diện tích S tam giác cơ.

3. Giải tam giác và phần mềm nhập việc đo đạc

Giải tam giác : Giải tam giác là đi kiếm những nhân tố (góc, cạnh) không biết của tam giác khi vẫn biết một vài nhân tố của tam giác cơ.

Muốn giải tam giác tao cần thiết lần ông tơ contact Một trong những góc, cạnh vẫn mang lại với những góc, những cạnh không biết của tam giác trải qua những hệ thức đã và đang được nêu nhập tấp tểnh lí cosin, tấp tểnh lí sin và những công thức tính diện tích S tam giác.

Các vấn đề về giải tam giác: Có 3 vấn đề cơ phiên bản về gỉải tam giác:

a) Giải tam giác lúc biết một cạnh và nhì góc.

=> Dùng tấp tểnh lí sin nhằm tính cạnh còn sót lại.

b) Giải tam giác lúc biết nhì cạnh và góc xen giữa

=> Dùng tấp tểnh lí cosin nhằm tính cạnh loại phụ thân. 

Sau cơ sử dụng hệ trái ngược của tấp tểnh lí cosin nhằm tính góc.

c) Giải tam giác lúc biết phụ thân cạnh

Đối với vấn đề này tao dùng hệ trái ngược của tấp tểnh lí cosin nhằm tính góc: 

    \(\cos A = \dfrac{b^{2}+c^{2}-a^{2}}{2bc}\)       

    \(\cos B = \dfrac{a^{2}+c^{2}-b^{2}}{2ac}\)

    \(cos C = \dfrac{a^{2}+b^{2}-c^{2}}{2ab}\)

Chú ý: 

Xem thêm: bài tập về hiện tại đơn

1. Cần Note là 1 tam giác giải được khi tao biết 3 nhân tố của chính nó, nhập cơ cần với tối thiểu một nhân tố phỏng lâu năm (tức là nhân tố góc ko được vượt lên trước 2)

2. Việc giải tam giác được dùng nhập những vấn đề thực tiễn, nhất là những vấn đề đo lường.